577 research outputs found

    Positional errors in species distribution modelling are not overcome by the coarser grains of analysis

    Get PDF
    The performance of species distribution models (SDMs) is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of fine-scale environmental data in SDMs, it is important to test this assumption. Models using fine-scale environmental data are more likely to be negatively affected by positional error as the inaccurate occurrences might easier end up in unsuitable environment. This can result in inappropriate conservation actions. Here, we examined the trade-offs between positional error and analysis grain and provide recommendations for best practice. We generated narrow niche virtual species using environmental variables derived from LiDAR point clouds at 5 x 5 m fine-scale. We simulated the positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grains in the range of 5 m to 500 m. In total, we assessed 49 combinations of positional accuracy and analysis grain. We used three modelling techniques (MaxEnt, BRT and GLM) and evaluated their discrimination ability, niche overlap with virtual species and change in realized niche. We found that model performance decreased with increasing positional error in species occurrences and coarsening of the analysis grain. Most importantly, we showed that coarsening the analysis grain to compensate for positional error did not improve model performance. Our results reject coarsening of the analysis grain as a solution to address the negative effects of positional error on model performance. We recommend fitting models with the finest possible analysis grain and as close to the response grain as possible even when available species occurrences suffer from positional errors. If there are significant positional errors in species occurrences, users are unlikely to benefit from making additional efforts to obtain higher resolution environmental data unless they also minimize the positional errors of species occurrences. Our findings are also applicable to coarse analysis grain, especially for fragmented habitats, and for species with narrow niche breadth

    Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts

    Get PDF
    Phylogenetic diversity measures are increasingly used in conservation planning to represent aspects of biodiversity beyond that captured by species richness. Here we develop two new metrics that combine phylogenetic diversity and the extent of human pressure across the spatial distribution of species — one metric valuing regions and another prioritising species. We evaluate these metrics for reptiles, which have been largely neglected in previous studies, and contrast these results with equivalent calculations for all terrestrial vertebrate groups. We find that regions under high human pressure coincide with the most irreplaceable areas of reptilian diversity, and more than expected by chance. The highest priority reptile species score far above the top mammal and bird species, and reptiles include a disproportionate number of species with insufficient extinction risk data. Data Deficient species are, in terms of our species-level metric, comparable to Critically Endangered species and therefore may require urgent conservation attention

    The decoupled nature of basal metabolic rate and body temperature in endotherm evolution

    Get PDF
    The origins of endothermy in birds and mammals are important events in vertebrate evolution. Endotherms can maintain their body temperature (Tb) over a wide range of ambient temperatures primarily using the heat that is generated continuously by their high basal metabolic rate (BMR)1. There is also an important positive feedback loop as Tb influences BMR1,2,3. Owing to this interplay between BMRs and Tb, many ecologists and evolutionary physiologists posit that the evolution of BMR and Tb must have been coupled during the radiation of endotherms3,4,5, changing with similar trends6,7,8. However, colder historical environments might have imposed strong selective pressures on BMR to compensate for increased rates of heat loss and to keep Tb constant9,10,11,12. Thus, adaptation to cold ambient temperatures through increases in BMR could have decoupled BMR from Tb and caused different evolutionary routes to the modern diversity in these traits. Here we show that BMR and Tb were decoupled in approximately 90% of mammalian phylogenetic branches and 36% of avian phylogenetic branches. Mammalian BMRs evolved with rapid bursts but without a long-term directional trend, whereas Tb evolved mostly at a constant rate and towards colder bodies from a warmer-bodied common ancestor. Avian BMRs evolved predominantly at a constant rate and without a long-term directional trend, whereas Tb evolved with much greater rate heterogeneity and with adaptive evolution towards colder bodies. Furthermore, rapid shifts that lead to both increases and decreases in BMRs were linked to abrupt changes towards colder ambient temperatures—although only in mammals. Our results suggest that natural selection effectively exploited the diversity in mammalian BMRs under diverse, often-adverse historical thermal environments

    A vision for incorporating human mobility in the study of human-wildlife interactions

    Get PDF
    As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. While there is increasing realization that both components of human activity significantly affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here, we propose a novel conceptual framework for developing a ‘Dynamic Human Footprint’ that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the Dynamic Human Footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behavior, demography, and distributions. We review existing terrestrial and marine human mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene

    Monitoring plant functional diversity from space

    Get PDF
    The world’s ecosystems are losing biodiversity fast. A satellite mission designed to track changes in plant functional diversity around the globe could deepen our understanding of the pace and consequences of this change and how to manage it

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    Get PDF
    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change

    Migrant birds and mammals live faster than residents

    Get PDF
    Billions of vertebrates migrate to and from their breeding grounds annually, exhibiting astonishing feats of endurance. Many such movements are energetically costly yet there is little consensus on whether or how such costs might influence schedules of survival and reproduction in migratory animals. Here we provide a global analysis of associations between migratory behaviour and vertebrate life histories. After controlling for latitudinal and evolutionary patterns, we find that migratory birds and mammals have faster paces of life than their non-migratory relatives. Among swimming and walking species, migrants tend to have larger body size, while among flying species, migrants are smaller. We discuss whether pace of life is a determinant, consequence, or adaptive outcome, of migration. Our findings have important implications for the understanding of the migratory phenomenon and will help predict the responses of bird and mammal species to environmental changeinfo:eu-repo/semantics/publishedVersio

    Altruism in a volatile world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.The evolution of altruism – costly self-sacrifice in the service of others – has puzzled biologists since The Origin of Species. For half a century, attempts to understand altruism have been built on the insight that altruists may help relatives to have extra offspring in order to spread shared genes . This theory – known as inclusive fitness – is founded on a simple inequality termed ‘Hamilton’s rule’. However, explanations of altruism have typically ignored the stochasticity of natural environments, which will not necessarily favour genotypes that produce the greatest average reproductive success. Moreover, empirical data across many taxa reveal associations between altruism and environmental stochasticity, a pattern not predicted by standard interpretations of Hamilton’s rule. Here, we derive Hamilton’s rule with explicit stochasticity, leading to novel predictions about the evolution of altruism. We show that of offspring produced by relatives. Consequently, costly altruism can evolve even if it has a net negative effect on the average reproductive success of related recipients. The selective pressure on volatility suppressing altruism is proportional to the coefficient of variation in population fitness, and is therefore diminished by its own success. Our results formalise the hitherto elusive link between bet-hedging and altruism, and reveal missing fitness effects in the evolution of animal societies.PK was supported by the National Geographic Society (GEF-NE 145-15) and a University of Bristol Research Studentship; ADH was supported by the Natural Environment Research Council (NE/L011921/1); ANR was supported by a European Research Council Consolidator Grant (award no. 682253); and SS was supported by the Natural Environment Research Council (NE/M012913/2)
    corecore